Catalysis guidelines for membrane-driven industrial propylene production via non-oxidative dehydrogenation of propane

Jord P. Haven¹*, Leon Lefferts¹, Jimmy A. Faria Albanese¹*

¹Catalytic Processes and Materials (CPM), Faculty of Science and Technology (S&T), University of Twente, 7522 NB, Enschede, The Netherlands

Motivation

- Ever-increasing global propylene demand
- Conventional propylene production: steam cracking (SC) and fluid catalytic cracking (FCC), aimed at producing gasoline from crude oil
- Climate crisis: SC and FCC technologies cannot be expanded
 Development of alternative propylene production routes

Non-oxidative dehydrogenation (NODH) of propane ¹:

Results and guidelines

Capital investment

	Capital cost (million USD, 2023)		
	Oleflex	MPEC	PCEC
Reactors	40	5838	57
Distillation columns	259	206	210
Fired heaters	20	9	9
Compressors + expanders	81	93	66
Heat exchangers	151	117	106
Total direct investment	551	6263	448

Scope of the project

How to make propane NODH more sustainable?

→ Shift equilibrium towards propylene by removing H_2 using dense ceramic membranes

MPEC membranes reactors:

Requirements to make MPEC process financially attractive:

- 1. Much thinner membranes
- 2. Stable thin membranes
- 3. Efficient surface catalysts to match permeation and reaction rates

Energy usage

Conventional PCEC process

Case study

Three different processes are simulated and compared:

- 1. UOP Oleflex process \rightarrow conventional propane NODH process
- 2. MPEC-assisted propane NODH process
- 3. PCEC-assisted propane NODH process

Requirements:

Pt catalysts must be equally active, selective, and stable (i.e. coke resistant) under membrane reactor conditions (extremely low H_2 partial pressures) as under standard Oleflex conditions

Conclusion

Industrial perspective:

• MPEC process: can only be cost-competitive if extremely thin and stable

Fresh propane feed

Derived from natural gas processing plant

95 mol% propane, 2.5 mol% ethane, 2.5 mol% *n*-butane

Propylene product

Polymer grade: >99.5 mol% pure

Production capacity: 450 ktpa (8400 operating hours per year)

Hydrogen product

Fuel grade A: >98.0 mol% pure

*corresponding authors

J. P. Haven: j.p.haven@utwente.nl J. A. Faria: j.a.fariaalbanese@utwente.nl

membranes can be developed in combination with efficient surface catalysts
PCEC process: is cost-competitive, can only be more sustainable if the used Pt catalyst is extremely stable under low H₂ partial pressures

References

[1] Sattler et al., "Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides", Chem. Rev., **114**: p. 10613-10653, 2014

Acknowledgements

This project is co-funded by TKI-E&I with the supplementary grant 'TKI- Toeslag' for Topconsortia for Knowledge and Innovation (TKI's) of the Ministry of Economic Affairs and Climate Policy.

